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Abstract
The actual value of axial, Rax, and equatorial, Req, impurity–ligand distances for Cr3+
embedded in tetragonal K2MgX4 (X = F, Cl) lattices has been explored by means of density
functional theory (DFT) calculations on clusters involving up to 69 ions using two different
functionals. For K2MgF4:Cr3+ Req and Rax are found to be coincident within only 0.5 pm.
When the g tensor of K2MgF4:Cr3+ is derived considering only the CrF3−

6 unit in vacuo at the
calculated equilibrium geometry the g⊥ − g‖ quantity fails to reproduce the experimental value
by one order of magnitude. In contrast, when the active electrons localized in the CrX3−

6
complex (X = F, Cl) are allowed to feel the anisotropic electric field coming from the rest of
the lattice ions the splitting in the first excited state, 4T2, increases by one order of magnitude.
The present results thus show that the g tensor anisotropy and the zero-field splitting constant,
D, observed for K2MgX4:Cr3+ (X = F, Cl) are not mainly due to a local deformation of the
CrX3−

6 octahedron but to the action of the internal electric field, often ignored when seeking the
microscopic origin of electronic properties due to impurities in insulating lattices. Accordingly,
serious doubts on the validity of the superposition model are cast by the present work.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The lack of translational symmetry makes it, in principle, more
difficult to understand the properties of a doped material than
those of a pure crystalline compound. This serious drawback
is, however, greatly overcome in the case of insulating host
lattices due to the localization of active electrons [1–4]. In
particular, when a transition metal impurity, M, is placed in
an insulator its valence electrons are usually confined in the
MXN complex formed by the impurity itself and the N nearest
anions or ligands [4, 5]. This confinement is experimentally

well proved by electron paramagnetic resonance (EPR) [6]
and especially electron nuclear double resonance (ENDOR) [7]
measurements which provide us with useful information on the
electronic density coming from unpaired electrons.

By virtue of these facts it has widely been assumed that an
understanding of electronic properties like the gyromagnetic
(g) tensor or the optical absorption peaks due to a transition
metal (TM) impurity only requires one to know: (i) the
position of the impurity in the host lattice and thus the nature
of the MXN complex formed inside, (ii) the existence of
possible defects coupled to the impurity and (iii) the distances
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Figure 1. (a) Unit cell of the K2MgX4 lattice (X = F, Cl). (b) View of the 37-atom cluster used in the DFT calculations. (c) View of the
69-atom cluster used for checking the convergence of the results of the 37-atom cluster.

between the impurity and all ligands [3–7]. The advent of
reliable information on the actual values of the impurity–ligand
distances, however, cast doubts on the general validity of the
last assumptions [4, 8]. For instance, the different colour
displayed by ruby and emerald cannot be explained on the
basis of a different mean Cr3+–O2− distance in both systems.
Indeed recent EXAFS measurements have proved that they
are coincident within 1 pm [9, 10]. Seeking to clarify this
situation it has been argued [8, 11–13] that an MXN unit is
never isolated but embedded in an insulating lattice formed by
ions. The ions lying outside that unit give rise to an internal
electric field, E, whose influence on the electronic properties of
the complex cannot thus be neglected a priori. Along this line
theoretical calculations considering only the CrO9−

6 complex
but including the effects of E explain rather reasonably the
colour shift among the different Cr3+-based gemstones [8, 11].
In accordance with these results it can be expected that EPR
parameters associated with a given TM impurity in an insulator
can also be sensitive to the form of the internal electric field
undergone by the complex.

The present work is devoted to gaining a better insight into
the experimental g tensor due to Cr3+ impurities in compounds
with the tetragonal K2NiF4 structure (figure 1(a)), which
belongs to the I 4/mmm spatial group (number 139). Different
centres are formed in lattices like K2MgF4, K2ZnF4 [14],
K2MgCl4 [15] or Rb2ZnF4 [16] doped with Cr3+ where in
all cases the impurity replaces the divalent cation of the
host lattice. Some of the centres involve close vacancies to
Cr3+ leading to an experimental spin-Hamiltonian displaying
orthorhombic symmetry. Nevertheless, in all lattices another
Cr3+ centre is observed whose spin-Hamiltonian exhibits a
perfect tetragonal symmetry, and where the principal axis
of both the g and zero-field splitting tensors is just the
crystal c axis (figure 1(a)). Moreover, an ENDOR study
of the superhyperfine tensors does not provide us with any
measurable evidence of a lack of local D4h symmetry around

Cr3+. These reasons thus support that the required charge
compensation in that the Cr3+ centres are far apart [14, 15]. It
should be pointed out that under replacement of a host cation,
Hp+, by an impurity, Iq+, with p �= q powerful techniques
like EPR and especially ENDOR have proved the formation
of centres with remote charge compensation. This situation is
found, for instance, in the so-called cubic centres formed in
Cr3+-or Fe3+-doped KMgF3 [17–19] where ENDOR data do
not show any deviation from a strict Oh local symmetry. In
the same vein the dominant C2V centre formed in NaCl:Rh2+

involves a close Na+ vacancy [7, 20]. However, by thermal
treatments the close vacancy can be dissociated from the
rhodium impurity, thus leading to a pure Jahn–Teller centre
with D4h symmetry [20].

The present study shall be focused on this free-vacancy
Cr3+ centre formed in layered perovskites like K2MgF4. For
this centre g‖ = 1.9727 and g⊥ = 1.9743 values have been
reported [14]. Close figures have been measured for the same
centre in K2ZnF4 (g‖ = 1.9733, g⊥ = 1.9740) [14], Rb2ZnF4

(g‖ = 1.9722, g⊥ = 1.9746) [16] or Rb2CdF4 (g‖ = 1.9710,
g⊥ = 1.9742) [16]. In all cases it is found |g‖ − g0| >

|g⊥ − g0|. A similar situation is also encountered for the free-
vacancy centre in K2MgCl4:Cr3+, where g‖ = 1.9831 and
g⊥ = 1.9846 [15].

The anisotropy exhibited by the experimental g tensor
has been interpreted [21–23] assuming that in all cases the
CrX3−

6 complex (X = F, Cl) exhibits a tetragonal compressed
geometry where the equilibrium Cr3+–X− distance along the
crystal c axis, Rax, is smaller than the equatorial one, Req.
Different authors using parametrized models have pointed out
that a value of Req − Rax in the 3–5 pm range might explain the
experimental g tensor [21, 22]. However, for being confident
on the reliability of this explanation it is crucial first to know
what the actual Rax and Req values are. Once such equilibrium
distances are reasonably known one should explore whether
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the experimental g⊥ − g‖ quantity can or cannot be accounted
for considering only the isolated CrX3−

6 unit (X = F, Cl).
Seeking to clarify these issues the systems K2MgF4:Cr3+

and K2MgCl4:Cr3+ have been looked into by means of
density functional theory (DFT) calculations. As there is
no experimental information on the Cr3+–X− (X = F, Cl)
distances in these systems ab initio calculations can be of great
help in order to gain a better insight into this relevant point.
Aside from deriving the Rax and Req values particular attention
is paid to determine the splitting, δ, induced on the first excited
state, 4T2 as a result of the tetragonal symmetry. This splitting
governs the g⊥ − g‖ value which is found experimentally to
be close to 2 × 10−3 for K2MgF4:Cr3+. For clearing out what
is the main factor responsible for δ this quantity has first been
derived considering only the isolated CrX3−

6 unit at the right
equilibrium geometry. In a second step δ has been calculated
for the CrX3−

6 complex subject to the effects of the internal
electric field, E.

This paper is arranged as follows. A short account of
computational details is given in section 2 while a recall of
the microscopic interpretation of the g tensor for a CrX3−

6
(X = F, Cl) complex is shown in section 3. Results on the
equilibrium geometry are reported in section 4 together with
the calculated values of the splitting δ and the g⊥−g‖ quantity.
The relationship of the present conclusions to the electronic
properties displayed by other impurities in insulating lattices is
discussed in section 5.

2. Computational details

Calculations have been carried out using the Amsterdam
density functional (ADF) code [24]. To support the
reliability of obtained results two different exchange–
correlation functionals have been used: Vosko–Wilk–
Nusair [25] in the local density approximation (LDA), and the
generalized gradient approximation (GGA) in its Becke–Lee–
Yang–Parr (BLYP) form [26, 27]. All the atoms have been
described through basis sets of TZP quality (tripe-ζ Slater-type
orbitals plus one polarization function) given in the program
database and the core electrons were kept frozen (1s–2s for F,
1s–2p for Mg, 1s–3p for K and 1s–3p for Cr).

Most of the calculations were performed for clusters of
37 ions centred at the impurity which keeps the tetragonal
symmetry of the host lattice (figure 1(b)). In every calculation
the cluster is not free but feels the electric field coming from
the rest of the lattice ions outside the cluster. In the present
calculations the position of ligands is derived through energy
minimization while the rest of the ions in the cluster have been
fixed at the positions given by x-ray diffraction data. The
method and cluster are thus the same previously employed [28]
for exploring the equilibrium geometry of Mn2+ and Ni2+
impurities in K2MgF4. As a test of its reliability this method
leads [28] to Rax and Req values for the pure K2MgF4 lattice
which differ by less than 1% from the experimental figures
R0

ax = 2.005 Å and R0
eq = 1.990 Å. These values underline

that the octahedron surrounding Mg2+ in K2MgF4 is elongated
but very slightly. For being sure about the actual Rax and Req

values for K2MgF4:Cr3+ and K2MgCl4:Cr3+ calculations on

a 69-ion cluster have also been carried out (figure 1(c)). The
differences between the optimized distances found in the 69-
ion cluster calculation and those reached in the cluster with
37 ions are less than 1 pm. Therefore, it can be considered
that the 37-ion cluster calculation results are converged with
respect to the cluster size.

For K2MgF4:Cr3+ the active electrons are found to reside
essentially in the CrF3−

6 complex which is thus reasonably
embedded in a 37-ion cluster. To be more specific, we
have verified that 99% of the electronic charge associated
with an antibonding ∼xy orbital is localized in the complex.
Therefore, a quantum calculation including the complex itself
and 30 additional ions forming a buffer is expected to provide
us with reasonable values of Rax and Req.

Once the equilibrium axial and equatorial distances are
determined particular attention has been paid to calculate the
splitting δ for the CrF3−

6 unit either isolated or under the
internal electric field, E. It should be noticed that in the
latter case E arises from close ions in the buffer as well as
from further ions of the whole lattice. These further ions
are represented by means of a set of 134 point charges with
values previously fitted to reproduce the electrostatic potential
corresponding to the infinite system, V0. Since these lattices
are very ionic, it is assumed that V0 corresponds to the potential
created by the nominal charges of the ions. This procedure
is thus the same previously used in [8, 11, 27], based on the
Ewald code [29].

3. Recall on the g tensor for a CrX3−
6 unit in

tetragonal symmetry

For a CrX3−
6 unit under perfect octahedral symmetry the g shift

arises from the admixture, via spin–orbit interaction, of the
ground state 4A2 with the only 4T2 state, emerging from the
d3 configuration [5, 6, 30]. As the orbital angular momentum
operator, L, belongs to T1 only T2 states are connected with
the ground state as a result of spin–orbit coupling. For a CrF3−

6
complex with small or moderate covalency, the g shift is well
described by [5, 6]

g0 − g = 8

3

ξ∗

�
(1)

where � = 10 Dq and ξ∗ is the effective spin–orbit coefficient
which is reduced with respect to that for free Cr3+ ion, ξ , due
to covalency [6]. Let us consider an antibonding orbital of the
CrF3−

6 complex briefly described by

|φi〉 = Ni |di〉 − λi |ϕi
L〉; i = t, e. (2)

Here |di〉 means a d-wavefunction while |ϕi
L〉 stands for a linear

combination involving valence orbitals of six ligands. The
relation between ξ∗ and ξ can be approximated by [30]

ξ∗ = N2
e N2

t ξ. (3)

Although equation (1) is based on second-order perturbation
theory such an expression is quite valid for a complex like
CrF3−

6 because 10 Dq is around 15 000 cm−1 while ξ is only
equal to 270 cm−1 [5, 6, 22].
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Table 1. Calculated values (in Å) of the axial and equatorial
metal–ligand distances for K2MgF4:Cr3+ by means of two different
functionals in a 37-atom cluster. For comparison purposes Rax and
Req values for Mn2+ and Ni2+ impurities in K2MgF4 are also shown.

Impurity Cr3+ Mn2+ Ni2+

Functional LDA BLYP LDA BLYP LDA BLYP

Rax 1.880 1.900 2.082 2.091 2.002 2.047
Req 1.885 1.900 2.025 2.031 1.981 1.995

When the complex is subject to a tetragonal perturbation it
produces in first order a splitting of the 4T2 state, leading to 4E
and 4B2 states whose energies with respect to the ground state
are denoted by �1 and �2, respectively. In such a case g‖ and
g⊥ can be written as [6, 30]

g0 − g⊥ = 8

3

ξ∗

�1
; g0 − g‖ = 8

3

ξ∗

�2
. (4)

Calling now �1 − �2 = δ, if δ � 10 Dq the quantity g⊥ − g‖
is essentially given by

g⊥ − g‖ = 8

3

ξ∗δ
(10 Dq)2

. (5)

Therefore, as ξ∗ < ξ it can be concluded that

g⊥ − g‖ <
8

3

ξδ

(10 Dq)2
. (6)

This simple inequality establishes a link between the δ value
calculated at the equilibrium geometry and the g⊥−g‖ quantity
measured experimentally.

4. Results and discussion

4.1. Equilibrium geometry for K2MgF4Cr3+ and
K2MgCl4:Cr3+

The equilibrium axial and equatorial impurity–ligand distances
calculated for K2MgF4:Cr3+ by means of two different
functionals are gathered in table 1. For comparison purposes
Rax and Req values previously derived for Mn2+ and Ni2+
impurities in K2MgF4 are also shown in the same table [28].
As expected the Mg2+ → Cr3+ substitution leads to Rax and
Req values smaller than R0

ax = 2.005 Å and R0
eq = 1.990 Å

corresponding to the perfect lattice.
As a salient feature the results shown in table 1 point out

that the CrF3−
6 complex embedded in the K2MgF4 lattice is

practically undistorted from the perfect octahedral geometry.
In fact, the difference between Req and Rax is found to be null
using the BLYP functional while it amounts only to 0.5 pm
with the LDA. Therefore, the calculated Req− Rax difference in
table 1 is found to be certainly smaller than the figure estimated
in previous works [21, 22]. The result for K2MgF4:Cr3+ in
table 1 is seemingly surprising when compared to the Rax

and Req values found [28] for Mn2+ and Ni2+ impurities in
K2MgF4. Let t = 2(Rax−Req)/(Req+Rax) be the tetragonality
parameter for CrF3−

6 or MF4−
6 (M = Mn, Ni) units in K2MgF4.

Table 2. Values of the KT , K1 and K2 force constants (all in eV Å
−2

units) calculated for K2MgF4:Cr3+. For comparison purposes results
previously derived for divalent impurities in the K2MgF4 lattice
using a 37-atom cluster are also displayed [28].

Cr3+ Ni2+ Mn2+

K1 K2 KT K1 K2 KT K1 K2 KT

Axial 16.94 0.67 17.60 7.33 1.30 8.63 4.81 1.37 6.18
Equatorial 16.54 5.68 22.23 8.77 7.80 16.57 8.00 9.27 17.27

According to table 1 while |t| is found to lie around 3% for
MnF4−

6 it is smaller than 0.3% for CrF3−
6 .

The study of the force constants, K ax
T and K eq

T ,
corresponding to the displacement of an axial and an equatorial
ligand ion, respectively, along the metal–ligand direction,
sheds light on this remarkable difference. In a simple model,
the total force constants K j

T ( j = ax, eq) can thus be
considered to involve two contributions [4, 31]:

K j
T = K j

1 + K j
2 ( j = ax, eq). (7)

Here K j
1 and K j

2 ( j = ax, eq) refer to the force constants
coming, respectively, from the metal–ligand bond and that
involving the ligand and the next-nearest neighbour to the
central ion for both axial and equatorial ligands. Values of
K j

T , K j
1 and K j

2 ( j = ax, eq) force constants derived from the
present calculations for K2MgF4:Cr3+ are gathered in table 2
and compared to previous results reached on Mn2+ and Ni2+
impurities in the same host lattice [28]. It can be noticed that in
all cases K eq

2 
 K ax
2 . As has previously been emphasized [32],

this remarkable anisotropy reflects the layered structure of
K2MgF4. Indeed, as shown in figure 1, the next-nearest
neighbour of a Mg2+ cation along the a or b axis is also a
divalent cation while it is a monovalent K+ ion if we move
along the principal c axis.

It is worth noting now that while for K2MgF4:M2+
(M = Mn, Ni) K eq

2 is found to be comparable to K eq
1 this

situation is no longer true for K2MgF4:Cr3+ where the metal–
ligand force constant K eq

1 is much higher than K eq
2 . This

fact is thus a manifestation of significant elastic decoupling
of the CrF3−

6 complex from the rest of the K2MgF4 lattice, a
phenomenon which usually takes place when a host cation is
replaced by another one with higher nominal charge [4, 33].
As a result of this elastic decoupling, it turns out that the ratio
K eq

T /K ax
T is equal only to 1.25 for K2MgF4:Cr3+ while a higher

value K eq
T /K ax

T = 2.8 is reached for K2MgF4:Mn2+. As Mn2+
has an ionic radius higher than that of Mg2+ the significant
difference between K eq

T and K ax
T thus explains the existence

of elongated equilibrium geometry for K2MgF4:Mn2+. In
contrast, in the case of K2MgF4:Cr3+, the equilibrium
geometry is found to be compressed but very slightly. This
result is thus in qualitative agreement with K eq

T and K ax
T values

of table 2 and an ionic radius of Cr3+ a little smaller than that
of Mg2+.

A bigger Req−Rax value is expected for K2MgCl4, a softer
lattice than K2MgF4. Using the LDA functional it is found for
K2MgCl4 Rax = 2.305 Å and Req = 2.330 Å thus implying
Req − Rax = 2.5 pm. A Req − Rax value equal to 3.1 pm is

4
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Table 3. Calculated values (in cm−1) of the splitting in the 4T2 state,
δ, for CrX3−

6 units in K2MgX4 (X = F, Cl) at the equilibrium
geometry using LDA. The first line collects the results for the
isolated complex while in the second line are shown the δ values
obtained once the complex is allowed to feel the internal electric
field, E, arising from the rest of the lattice ions not involved in the
CrX3−

6 unit. Equilibrium values are Rax = 1.880 Å and
Req = 1.885 Å for K2MgF4:Cr3+ and Rax = 2.305 Å and
Req = 2.330 Å for K2MgCl4:Cr3+.

K2MgF4:Cr3+ K2MgCl4:Cr3+

δ (isolated complex) 65 73
δ (with the internal field) 976 1113

obtained by means of the BLYP functional although the values
of Req and Rax are found to be 2.5% higher than using the LDA.

4.2. Calculation of the splitting δ and the g tensor for the
isolated complex

Once the equilibrium geometry of CrX3−
6 units in K2MgX4

(X = F, Cl) has been established it is crucial to determine what
is the value of the splitting δ and the g⊥ − g‖ value expected
for an isolated complex at the right equilibrium geometry. For
this goal we have only considered the LDA results which give
a non-zero Req − Rax value for K2MgF4.

Values of the splitting in the 4T2 state are given in
table 3 for both CrX3−

6 (X = F, Cl) units in vacuo. It can
be noticed that for both systems the splitting δ is calculated
to be smaller than 100 cm−1. Let us now take as a guide
the case of K2MgF4:Cr3+ for which the 10 Dq is found to
be equal to 14 750 cm−1. Using this value together with
δ = 65 cm−1 the inequality (6) leads to the conclusion that the
experimental g⊥ − g‖ quantity should be positive and smaller
than 2 × 10−4. This figure is, however, one order of magnitude
smaller than the value g⊥ − g‖ = 1.6 × 10−3 measured
experimentally [14]. Therefore, the small compression of the
CrF3−

6 unit in K2MgF4 derived from the present calculations
through the LDA functional can hardly be mainly responsible
for the g-tensor anisotropy well observed experimentally.

4.3. Effects of the internal electric field on the splitting δ and
the g tensor

As has already been pointed out, although active electrons
are well localized in the CrX3−

6 (X = F, Cl) unit it does
not mean that the electronic properties associated with the
Cr3+ impurity can be explained considering only that isolated
complex. In fact, the rest of the ions of the K2MgX4 (X = F,
Cl) host lattice can create an electric field, E = −∇VR(r),
upon the electrons disseminated in the complex region. In
figure 2 is portrayed the calculated value of VR(r) when r is
along the crystallographic a and c axes. It can be noticed
that, according to symmetry, there is no electric field on the
chromium ion but it appears at ligand sites. In particular
(−e)VR(r) becomes higher when r is parallel to c than when
r is along a or b axes. This fact alone already produces a
splitting in the antibonding eg(∼3z2−r 2; ∼x2−y2) orbitals.
According to the form of (−e)VR(r) in the ligand region it can

Figure 2. Electrostatic potential, VR(r), of the rest of the lattice
along [1 0 0] and [0 0 1] directions on a seven-atom cluster.

be expected that the molecular orbital ∼ 3z2−r 2 has a higher
energy than the ∼x2−y2 one. This means that the splitting in
eg(∼3z2−r 2; ∼x2−y2) orbitals produced by the electric field
due to the rest of the ions of the K2MgX4 lattice on the CrX3−

6
(X = F, Cl) complex is qualitatively similar to that expected
for an isolated unit under compression along the OZ axis.

The calculated values of the splitting δ for CrX3−
6 (X = F,

Cl) units under the influence of the internal electric field in the
K2MgX4 (X = F, Cl) host lattice are also shown in table 3.
These values, calculated at the equilibrium geometry, are one
order of magnitude bigger than those derived for an isolated
complex using the LDA. Furthermore, quite similar values
of δ are found for a perfect octahedral complex feeling the
internal electric field of K2MgX4 (X = F, Cl) host lattices.
For instance, making Rax = Req = 1.883 Å for CrF3−

6 in
K2MgF4 it is obtained that δ = 919 cm−1 while a δ value equal
to 1032 cm−1 is derived for CrCl3−

6 in K2MgCl4 assuming
Rax = Req = 2.32 Å.

Considering now the δ = 976 cm−1 value of table 3
for K2MgF4:Cr3+ the inequality (6) gives rise to g⊥ − g‖ <

3.2×10−3 which is thus consistent with experimental findings.
Moreover, from the present calculations it is obtained that
N2

t = 0.87, N2
e = 0.78 and �1 = 16 000 cm−1.

Therefore, taking into account (3) and (4) it is derived for
K2MgF4:Cr3+ g‖ = 1.9723 and g⊥ = 1.9740. These figures
are thus not far from the values g‖ = 1.9727 and g⊥ = 1.9743
measured experimentally [14] for K2MgF4:Cr3+.

Seeking to provide further arguments on the origin of
the g-tensor anisotropy for K2MgF4:Cr3+ and K2MgCl4:Cr3+
we have also calculated what is the required distortion on
an isolated complex in order to get the δ values collected in
table 3. Calculations give Req − Rax ≈ 20 pm for both
K2MgX4:Cr3+ (X = F, Cl) systems. This quantity is thus
much bigger than the equilibrium Req − Rax = 0.5 and
2.5 pm values derived, respectively, for K2MgF4:Cr3+ and
K2MgCl4:Cr3+ by means of the LDA.

5. Final remarks

From the present analysis the g-tensor anisotropy observed
for the free-vacancy Cr3+ centre formed in tetragonal layered

5
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perovskites like K2MgF4 is not due to the compression of the
CrF3−

6 octahedron. In contrast, the arguments shown in this
work strongly support that the g-tensor anisotropy displayed
by the free-vacancy Cr3+ centre in this kind of lattice is a
direct reflection of the internal electric field, E. The key role
played by this internal field for a right interpretation of the
g⊥ − g‖ quantity measured in K2MgF4:Cr3+ is founded on two
fundamental facts. On the one hand, the calculated Req and
Rax values are essentially coincident as a result of a significant
elastic decoupling of the CrF3−

6 complex from the rest of
the K2MgF4 lattice. This fact thus avoids any interpretation
of g⊥ − g‖ based solely on the compression of the CrF3−

6
octahedron. On the other hand, the calculated electric field, E,
due to all ions lying outside the complex, exhibits a remarkable
anisotropy as shown in figure 2 which turns out to be the real
cause of the g⊥ − g‖ difference.

It should be stressed now that the role played by E
for understanding the electronic properties of impurities in
insulators has often been ignored [34, 35]. Nevertheless, the
different colour exhibited by ruby and emerald [4, 8] has been
shown to reflect the different shape of the internal field in
two lattices which are not isomorphous. The same cause has
been demonstrated to be responsible [36, 37] for the distinct
properties due to M2+ impurities (M = Mn and Ni) in normal
and inverted perovskite lattices [38–40].

According to the present results a correct understanding
of g⊥ − g‖ for transition metal impurities in insulators with a
local tetragonal symmetry requires us to consider the influence
of the internal electric field on the complex and not only its
local deformation. The influence of this field upon the g-
tensor anisotropy can thus be of importance in cases such
as K2ZnF4:Cu2+ [41], K2MgF4:Ni+ [42] and also in the
CuL4NH2−

3 centre formed in NH4L:Cu2+ (L = Cl, Br) where
Cu2+ occupies an interstitial position and has a local D4h

symmetry [43]. Along this line it has been shown [13] that
the internal electric field, E, plays a key role for explaining
the charge transfer spectra observed for NH4L:Cu2+ (L = Cl,
Br) [44].

Obviously the internal electric field, E, can also play a
relevant role in a right interpretation of other spin-Hamiltonian
parameters. In particular, in the spin Hamiltonian of a Kramers
ion with S > 1/2 under tetragonal symmetry appears the zero-
field splitting term described by HZFS = D (S2

Z − S2/3), where
the D parameter is somewhat related to the g-tensor anisotropy.
If we only consider the excited states coming from the 4T2 state
D can be approximated by (g‖ − g⊥)ξ∗/6. This expression
leads to D < 0 in qualitative agreement with the value D =
−1130 MHz measured experimentally for K2MgF4:Cr3+ [14].
It should be noted, however, that at variance with what happens
for the g tensor the excited states with S = 1/2 also play a role
for explaining the experimental D value of Cr3+ impurities.
Despite this fact the results of this work support that D for
Cr3+ K2MgF4:Cr3+ is the result of the internal electric field
undergone by the CrF3−

6 complex. The use of monovalent
ions, such as Fe+, with 10 Dq values lower than that for Cr3+
in a layered lattice, might give rise to an increase of the D
value [45].

The present results also show that the superposition
model [46], widely used [21, 22, 47–49] in the interpretation of

EPR and optical data of TM impurities, is not correct. In fact,
according to such a model EPR parameters like g‖, g⊥ or D are
assumed to depend only on Rax and Req, a statement which is
against the present conclusions. Failures of the superposition
model have also been demonstrated [4, 50] in the analysis of
axial and equatorial superhyperfine tensors for the FeOF4−

5
centre formed in KMgF3 [4, 49] and also for the MnF4−

6 unit
formed in K2MgF4 [28].

As a main conclusion, even if active electrons coming
from a TM impurity, are highly localized in an MXN complex,
an insight into its electronic properties requires taking into
account the internal electric field created on the complex region
by the rest of the lattice ions.

It is worth noting that a previous study carried out on
d9 ions in layered perovskites has demonstrated the key
role played by the internal electric field for understanding
both the equilibrium geometry and the electronic structure.
Both features follow a pattern markedly different from that
observed for Jahn–Teller ions embedded in perfect cubic host
lattices [32, 51]. Further work on the influence of the internal
electric field on the properties of impurities and mixed crystal
is underway.
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